邮件自动发送训练结果

📒 笔记 · 2022-05-11
邮件自动发送训练结果

使用Python实现模型训练完成后自动向邮箱中发送训练结果。

最基础的发送邮件的代码

首先我们看最简单的用python实现发邮件功能的代码,运行以下代码可以实现向指定的接收邮箱发送一个主题为“Training finished”,正文内容为test的邮件。

import smtplib
from email.mime.text import MIMEText
from email.header import Header
from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart

def send_email(subject="No subject", content="I am boring"):
  mail_host = "smtp.163.com"       # 邮箱的设置里的服务器地址
  mail_user = "*****@163.com"      # 发送邮件的邮箱
  mail_pw = "*********"            # 授权码,邮箱设置里开启POP3/SMTP服务,提供给你的密钥
  sender = "******@163.com"        # 发送邮件的邮箱,
  receiver = "******@icloud.com"   # 接收邮件的邮箱

  # Create the container (outer) email message.
  msg = MIMEText(content, "plain", "utf-8")
  msg['Subject'] = subject
  msg['From'] = sender
  msg['To'] = receiver

  try:
    smtp = smtplib.SMTP_SSL(mail_host, 994)   # 实例化smtp服务器
    smtp.login(mail_user, mail_pw)            # 登录
    smtp.sendmail(sender, receiver, msg.as_string())
    print("Email send successfully")
  except smtplib.SMTPException:
    print("Error: email send failed")

if __name__ == '__main__':
  send_email(subject="Training finished", content="Test")

其中,mail_host为邮箱的服务器地址,我们可以在邮箱的POP3/SMTP/IMAP设置页面里找到。

mail_user为发送邮件的邮箱,负责将你的训练结果作为邮件发出去。

mail_pw为邮箱的授权码,在POP3/SMTP/IMAP设置页面可以找到。选择开启IMAP/SMTP服务,安全识别后会提供给你密钥。

sendermail_user一样,发送邮件的邮箱

receiver为接收邮件的邮箱。

运用到训练脚本

以下代码是将发送邮件的代码加入到swin transformer的运行脚本中。

代码的第13-38行,111,117,123,134行是加入的自动发送邮件的脚本。

实现的是全部的epoch训练结束后,将每个epoch的损失和准确率发送到指定的邮箱里。

如果需要每个epoch训练完都发送一次邮件的话,可以自己稍微改一下for循环那里。

import os
import argparse

import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

from my_dataset import MyDataSet
from model import swin_base_patch4_window7_224 as create_model
from utils import read_split_data, train_one_epoch, evaluate

import smtplib
from email.mime.text import MIMEText
from email.header import Header
from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart

def send_email(subject="No subject", content="I am boring"):
  mail_host = "smtp.163.com"       # 邮箱的设置里的服务器地址
  mail_user = "*****@163.com"      # 发送邮件的邮箱
  mail_pw = "*********"            # 授权码,邮箱设置里开启POP3/SMTP服务,提供给你的密钥
  sender = "******@163.com"        # 发送邮件的邮箱,
  receiver = "******@icloud.com"   # 接收邮件的邮箱

  # Create the container (outer) email message.
  msg = MIMEText(content, "plain", "utf-8")
  msg['Subject'] = subject
  msg['From'] = sender
  msg['To'] = receiver

  try:
    smtp = smtplib.SMTP_SSL(mail_host, 994)  # 实例化smtp服务器
    smtp.login(mail_user, mail_pw)           # 登录
    smtp.sendmail(sender, receiver, msg.as_string())
    print("Email send successfully")
  except smtplib.SMTPException:
    print("Error: email send failed")


def main(args):
    device = torch.device(args.device if torch.cuda.is_available() else "cpu")

    if os.path.exists("./weights") is False:
        os.makedirs("./weights")

    tb_writer = SummaryWriter()

    train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)

    img_size = 224
    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(img_size),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        "val": transforms.Compose([transforms.Resize(int(img_size * 1.143)),
                                   transforms.CenterCrop(img_size),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}

    # 实例化训练数据集
    train_dataset = MyDataSet(images_path=train_images_path,
                              images_class=train_images_label,
                              transform=data_transform["train"])

    # 实例化验证数据集
    val_dataset = MyDataSet(images_path=val_images_path,
                            images_class=val_images_label,
                            transform=data_transform["val"])

    batch_size = args.batch_size
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               pin_memory=True,
                                               num_workers=nw,
                                               collate_fn=train_dataset.collate_fn)

    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=batch_size,
                                             shuffle=False,
                                             pin_memory=True,
                                             num_workers=nw,
                                             collate_fn=val_dataset.collate_fn)

    model = create_model(num_classes=args.num_classes).to(device)

    if args.weights != "":
        assert os.path.exists(args.weights), "weights file: '{}' not exist.".format(args.weights)
        weights_dict = torch.load(args.weights, map_location=device)["model"]
        # 删除有关分类类别的权重
        for k in list(weights_dict.keys()):
            if "head" in k:
                del weights_dict[k]
        print(model.load_state_dict(weights_dict, strict=False))

    if args.freeze_layers:
        for name, para in model.named_parameters():
            # 除head外,其他权重全部冻结
            if "head" not in name:
                para.requires_grad_(False)
            else:
                print("training {}".format(name))

    pg = [p for p in model.parameters() if p.requires_grad]
    optimizer = optim.AdamW(pg, lr=args.lr, weight_decay=5E-2)
    
    content=''
    for epoch in range(args.epochs):
        # train
        train_loss, train_acc = train_one_epoch(model=model,optimizer=optimizer,data_loader=train_loader,device=device,epoch=epoch)
        
        # 将训练损失和准确率保存为字符串
        content+='[train epoch:{}]loss:{:.3f},acc:{:.3f}'.format(epoch,train_loss,train_acc) + '\n'
       
        # validate
        val_loss, val_acc = evaluate(model=model,data_loader=val_loader,device=device, epoch=epoch)
        
        # 将验证的损失和准确率保存为字符串
        content+='[val epoch:{}]loss:{:.3f},acc:{:.3f}'.format(epoch,val_loss,val_acc) + '\n'
        
        tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]
        tb_writer.add_scalar(tags[0], train_loss, epoch)
        tb_writer.add_scalar(tags[1], train_acc, epoch)
        tb_writer.add_scalar(tags[2], val_loss, epoch)
        tb_writer.add_scalar(tags[3], val_acc, epoch)
        tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)

        torch.save(model.state_dict(), "./weights/model-{}.pth".format(epoch))
    # email,调用函数,发送邮件
    send_email(subject='Training finished',content=content)
    

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--num_classes', type=int, default=2)
    parser.add_argument('--epochs', type=int, default=10)
    parser.add_argument('--batch-size', type=int, default=32)
    parser.add_argument('--lr', type=float, default=0.0001)

    # 数据集所在根目录
    # https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
    parser.add_argument('--data-path', type=str,default="/content/drive/MyDrive/transformer/double/skin_photos")

    # 预训练权重路径,如果不想载入就设置为空字符
    parser.add_argument('--weights', type=str, default='/content/drive/MyDrive/transformer/swin_transformer/swin_base_patch4_window7_224.pth',
                        help='initial weights path')
    # 是否冻结权重
    parser.add_argument('--freeze-layers', type=bool, default=False)
    parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')

    opt = parser.parse_args()

    main(opt)

测试结果

训练完成后,邮箱可以收到如下邮件:

Python
Theme Jasmine by Kent Liao